Rao's degree sequence conjecture
نویسندگان
چکیده
Let us say two (simple) graphs G,G′ are degree-equivalent if they have the same vertex set, and for every vertex, its degrees in G and in G′ are equal. In the early 1980’s, S. B. Rao made the conjecture that in any infinite set of graphs, there exist two of them, say G and H, such that H is isomorphic to an induced subgraph of some graph that is degree-equivalent to G. We prove this conjecture.
منابع مشابه
On a degree sequence analogue of Pósa's conjecture
A famous conjecture of Pósa from 1962 asserts that every graph on n vertices and with minimum degree at least 2n/3 contains the square of a Hamilton cycle. The conjecture was proven for large graphs in 1996 by Komlós, Sárközy and Szemerédi [17]. We prove a degree sequence version of Pósa’s conjecture: Given any η > 0, every graph G of sufficiently large order n contains the square of a Hamilton...
متن کاملMeta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models.
We developed generalized functional linear models (GFLMs) to perform a meta-analysis of multiple case-control studies to evaluate the relationship of genetic data to dichotomous traits adjusting for covariates. Unlike the previously developed meta-analysis for sequence kernel association tests (MetaSKATs), which are based on mixed-effect models to make the contributions of major gene loci rando...
متن کاملA bound for Feichtinger conjecture
In this paper, using the discrete Fourier transform in the finite-dimensional Hilbert space C^n, a class of nonRieszable equal norm tight frames is introduced and using this class, a bound for Fiechtinger Conjecture is presented. By the Fiechtinger Conjecture that has been proved recently, for given A,C>0 there exists a universal constant delta>0 independent of $n$ such that every C-equal...
متن کاملOn Degree Sequences Forcing The Square of a Hamilton Cycle
A famous conjecture of Pósa from 1962 asserts that every graph on n vertices and with minimum degree at least 2n/3 contains the square of a Hamilton cycle. The conjecture was proven for large graphs in 1996 by Komlós, Sárközy and Szemerédi [23]. In this paper we prove a degree sequence version of Pósa’s conjecture: Given any η > 0, every graph G of sufficiently large order n contains the square...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 105 شماره
صفحات -
تاریخ انتشار 2014